Learning binary factor analysis with automatic model selection
نویسندگان
چکیده
Binary Factor Analysis (BFA) uncovers the independent binary information sources from observations with wide applications. BFA learning hierarchically nests three levels of inverse problems, i.e., inference of binary code for each observation, parameter estimation and model selection. Under Bayesian YingYang (BYY) framework, the first level becomes an intractable Binary Quadratic Programming (BQP) problem, while model selection can be conducted automatically during parameter learning. We conduct extensive experiments to reveal that the performance order of four BQP methods is reversed from making BQP optimization to making BYY automatic model selection, which implies that learning is not merely optimization. Moreover, the BFA learning algorithm is further developed with priors over parameters to improve the performance. Finally, based on BFA, we empirically compare BYY with Variational Bayes (VB) and Bayesian information criterion (BIC). & 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملCanonical Dual Approach to Binary Factor Analysis
Binary Factor Analysis (BFA) is a typical problem of Independent Component Analysis (ICA) where the signal sources are binary. Parameter learning and model selection in BFA are computationally intractable because of the combinatorial complexity. This paper aims at an efficient approach to BFA. For parameter learning, an unconstrained binary quadratic programming (BQP) is reduced to a canonical ...
متن کاملSupplier selection among alternative scenarios by Data envelopment analysis
A considerable problem in competitive trade world is choosing the best supply chain. As a result in much more serious circumstances of competitions looking for the best supplier for manufacturing, for preparing raw material, is very significant. Meantime suppliers have different scenarios to be fulfilled, such as changing selection variables like lead-time, transportation cost and transportatio...
متن کاملA Trend on Regularization and Model Selection in Statistical Learning: A Bayesian Ying Yang Learning Perspective
In this chapter, advances on regularization and model selection in statistical learning have been summarized, and a trend has been discussed from a Bayesian Ying Yang learning perspective. After briefly introducing Bayesian YingYang system and best harmony learning, not only its advantages of automatic model selection and of integrating regularization and model selection have been addressed, bu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 134 شماره
صفحات -
تاریخ انتشار 2014